翻訳と辞書 |
Intersection form (4-manifold) : ウィキペディア英語版 | Intersection form (4-manifold) In mathematics, the intersection form of an oriented compact 4-manifold is a special symmetric bilinear form on the 2nd cohomology group of the 4-manifold. It reflects much of the topology of the 4-manifolds, including information on the existence of a smooth structure. ==Definition==
The intersection form : is given by : When the 4-manifold is also smooth, then in de Rham cohomology, if ''a'' and ''b'' are represented by 2-forms α and β, then the intersection form can be expressed by the integral : where is the wedge product, see exterior algebra.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Intersection form (4-manifold)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|